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Abstract

Regression discontinuity designs are a commonly used approach for causal inference
in observational studies. Under mild continuity assumptions, the method provides a
robust estimate of the average treatment effect for observations directly at the threshold
of assignment. However, it has limited external validity for populations away from the
cutoff. This article proposes a strategy to overcome this limitation by identifying a
wider interval around the cutoff for estimation using a Generalization of a Regression
Discontinuity Design (GRD). In this interval, predictive covariates are used to explain
away the relationship between the assignment score and the outcome of interest for the
pre-intervention period. Under the partially-testable assumption of conditional time-
invariance in absence of the treatment, the generalization bandwidth can be applied to
the post-intervention period, allowing for the estimation of average treatment effects
for populations away from the cutoff. To illustrate this method, GRD is applied in the
context of free higher education in Chile to estimate effects for vulnerable students.
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1 Introduction

Regression discontinuity designs (RD) are commonly used in observational studies to esti-

mate the effect of policies that are assigned based on a continuous score or running variable.

In these settings, the probability of assignment to treatment changes discontinuously at a

specific value of the score. Assuming that potential outcomes change smoothly across that

threshold, any discontinuity in observed outcomes will be due to the treatment (Lee 2008;

Lee & Lemieux 2010). However, one of the main drawbacks of the regression discontinuity

approach is its lack of external validity: It only provides estimates for effects that are local

to observations right at the cutoff (LATE).

One of the main challenges for estimating effects away from the cutoff is the corre-

lation between the running variable and the outcome. Without taking this correlation into

account or making stronger assumptions, it is not possible to identify causal effects beyond

the LATE. Naive attempts to model such relationship with flexible functions have shown to

be highly sensitive to the choice of model (Manski 2013; Angrist & Rokkanen 2015; Gelman

& Imbens 2019), while other generalization methods that attempt to break the linkage be-

tween the assignment score and the outcome impose conditions on the entire sample that

may fail conditional ignorability assumption tests (Angrist & Rokkanen 2015).

This paper proposes a new method, the Generalization of Regression Discontinuity

Design (GRD), to identify a bandwidth for generalizability and estimate average treatment

effects for populations away from the cutoff. GRD uses representative template matching

(RTM) (Silber et al. 2014; Bennett et al. 2019) leveraging pre-intervention data and pre-

dictive covariates to identify an interval in the pre-intervention period where covariates can

explain away the relationship between the running variable and the outcome. Under the as-

sumption that conditional potential outcomes in the absence of treatment would be the same

across time, the generalization bandwidth can be applied to the post-intervention period to
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recover target average treatment effects for the population within that interval. GRD has

several advantages: it presents a gradual approach to external validity, relying on a data-

driven bandwidth for generalizability, avoids extrapolation by using matching to adjust for

covariates, and it generates a matched sample that resembles the observed characteristics of

a population of interest.

The GRD method sits in between a regression discontinuity approach and a difference-

in-differences (DD) estimation. Unlike a RD design, GRD is able to provide causal estimates

away from the cutoff, even for a particular population of interest by adjusting the distribution

of covariates that are matched through RTM. In contrast to a DD approach, GRD provides

estimates for a subpopulation where identification assumptions are not imposed to the en-

tire sample and do not rely on extrapolation. The combination of RD designs with a DD

approach has been widely used in prior literature as a way to enhance a RD (Chicoine 2017;

Grembi et al. 2016), but not in the context of a gradual generalization of this method.

This paper relates to the literature on regression discontinuity designs as a form

of local randomization (Lee 2008; Lee & Lemieux 2010; Cattaneo et al. 2015; Keele et al.

2015). As shown by Lee (2008), if the running variable is comprised of a random element

that cannot be precisely controlled, then the treatment assignment is “as good as random”

for a neighborhood around the threshold. Under conditions set by Cattaneo et al. (2015) for

identifying such a neighborhood, matching within a narrow bandwidth close to the cutoff

would recover the effect of the intervention at the cutoff.

Applying the previous idea of local randomization to a two-period setting, a difference-

in-differences approach should be able to reproduce RD estimates, given that groups imme-

diately above and below the cutoff should have very similar outcomes in the pre-intervention

period. Then, using a GRD approach, the bandwidth can be gradually increased around the

cutoff up to the point where predictive covariates can no longer explain away the relationship

between the running variable and the outcome, or balancing restrictions do not hold.
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There are two distinct advantages to taking a gradual approach for generalizability

using matching. The first one is that even if predictive covariates are not able to break the

linkage between the running variable and the outcome for the complete sample, GRD is still

able to recover an effect for a subpopulation within a generalization bandwidth. The second

one is that there is no need to rely on extrapolation or parametric assumptions if there is

not enough overlap between covariates, making estimates local to a specific population but

more robust given that assumptions need to hold only for a specific interval.

Following Keele, Small, Hsu, & Fogarty (2019), GRD emulates one of the most

“convincing” cases of difference-in-differences to inform the selection of the largest external

validity bandwidth, where there is no significant difference between outcomes in the treat-

ment and control group for the pre-intervention period after closely controlling for predictive

covariates. The fact that there is no difference in pre-intervention outcomes emulates the

idea of local randomization, as treatment and control comparison in the post-intervention pe-

riod provides similar results to the difference-in-differences estimate. Keele et al. (2019) also

propose a useful framework to conduct sensitivity analysis to hidden biases in the context

of a difference-in-differences approach, which can also be used for the RTM setting.

The use of predictive covariates to generalize the regression discontinuity design has

been used before in the literature. Angrist & Rokkanen (2015) show that under a conditional

independence assumption (CIA), the link between the running variable and the outcome

can be broken by controlling for predictive confounders. The authors use this approach to

estimate the effect of attending selective public schools on inframarginal students. After

testing the conditional independence assumption using a regression approach, Angrist &

Rokkanen (2015) were able to extrapolate away from the cutoff for only one of their samples.1

Rokkanen (2015) developed a latent variable model to generalize a regression discontinuity

design, building on their previous work. Unlike GRD, however, these methods propose an
1Their second sample, using 7th grade test scores, failed the residual test and the authors could not

generalize beyond the traditional RD estimate.
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“all or nothing” approach, relying on the idea that predictive covariates or a latent factor can

break the linkage between the running variable and the outcome across the entire sample of

analysis.2 GRD, on the other hand, avoids this stringent condition on the whole sample by

using a gradual approach to generalization and makes explicit the population that it can be

generalized for.

This paper also relates to the literature of comparative RD design, where an external

sample that was not subject to the treatment at any level of the running variable is used as

a counterfactual (Wing & Cook 2013; Wing & Bello-Gomez 2018). For instance, Wing &

Cook (2013) combine both a difference-in-differences approach and a regression discontinuity

design to extrapolate away from the cutoff under the assumption of time-invariant effect of

the assignment variable. GRD also leverages pre-intervention data as an external sample to

inform the bandwidth for generalizibility; however, by using a matching approach to balance

covariates directly, it does not rely on extrapolation and maintains the units of analysis

intact. Additionally, GRD only assumes conditional time invariance for potential outcomes

in the absence of treatment within the generalization interval.

Additional methods have been proposed to generalize the RD to other populations

such as Cattaneo et al. (2018) and Bertanha & Imbens (2019). However, given that they

apply to different contexts, such as fuzzy regression discontinuity designs or RD with multiple

cutoffs, these methods are outside the scope of this paper.

To illustrate the use of GRD, I apply the method to the introduction of free higher

education in Chile at the end of 2015, where students in the bottom 50% of the income dis-

tribution were eligible to receive this benefit. This example lends itself nicely to a regression

discontinuity approach and, given the availability of additional pre-intervention data, also

allows for the demonstration of how a GRD approach would work.
2Angrist & Rokkanen (2015) use a bandwidth around the cutoff for estimating effects on infra-marginal

students to avoid bias of changing counterfactuals, but the bandwidth is not chosen in relation to the interval
where the CIA holds.
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The structure of this paper is as following. Section 2 describes the framework for

the generalization of a regression discontinuity design away from the cutoff, as well as the

implementation of the method in practice. Section 3 shows the performance of GRD using

simulated data for different scenarios. Section 4 shows the application of the methodology

in the context of free higher education in Chile. Finally, section 5 concludes.

2 Generalization of regression discontinuity design

2.1 Framework

Consider a two-period setup, where t = 0 refers to a pre-intervention and t = 1 a post-

intervention period.3 The intervention itself is noted by Dit = 1 for those individuals i in

period t in the treatment group and Dit = 0 for individuals in the control group. In a

sharp regression discontinuity (RD) design, the intervention is assigned based on a running

variable Rit, where all individuals i in period 1 are treated if their running variable lies above

or below a threshold of eligibility (for illustration purposes Di1 = 1(Ri1 < c)); otherwise,

they are assigned to the control group. Each individual i in period t is also associated to

a set of predictive observable covariates, Xit, a set of unobserved confounders uit, and an

observed outcome, Yit. The estimand of interest in this case will be the Average Treatment

Effect on the Treated (ATT), for the post-intervention period t = 1.

Let Y
(0)

it and Y
(1)

it be the potential outcomes for unit i in period t, where Y
(0)

it repre-

sents the potential outcome under control and Y
(1)

it the potential outcome under treatment.

Under an additive treatment effect, potential outcomes for unit i in period t under treatment

z can be expressed as a function of observed covariates X, unobserved confounders u, and

the running variable R, as following:

Y
(z)

it = g(Xit, uit, Rit) + zit · τ(Xit, uit, rit) + αt + εit

3Data in this case can be either panel or cross-sectional data.
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where g is an unknown function and εit is a disturbance term with mean 0.

The observed outcome and the potential outcomes are related as following:

Yit = DitY
(1)

it + (1 − Dit)Y (0)
it

Given that for t = 0, Di0 = 0 ∀i, we know that Yi0 = Y
(0)

i0 . For a traditional RD

setting, assuming continuity of all observed and unobserved variables across the cutoff, as

well as the potential outcomes, I know that for the pre-intervention period:

lim
R→c−

E[Yi0] = lim
R→c+

E[Yi0]

so there is no effect at the cutoff.

As previously stated, let the potential outcome under control for the pre-intervention

period be a function of the running variable R, observable covariates X, and a set of unob-

servable confounders u:

Y
(0)

i0 = g(Xi0, ui0, Ri0) + α0 + εi0

Then, the expectation of the potential outcome conditional on R can be expressed

as following:

Y
(0)

0 (R) = E[Y (0)
i0 |R] = µ(R) + α0

where the conditional expectation of the potential outcome under control (and, by

extension, the observed outcome) for the pre-intervention period depends on the running

variable R.

7



On the other hand, the conditional expectation of the potential outcomes under

treatment can be expressed as following:

Y
(1)

0 (R) = E[Y (1)
i0 |R] = µ(R) + τ(R) + α0

where τ(R) is the causal effect of the intervention as a function of the running

variable R.

To find the generalization bandwidth, assume that for an interval H∗ around the

cutoff c, the running variable R can be expressed as:

Ri0 = h(Xi0) + ηi0 ∀ Ri0 ∈ H∗ (1)

Equation (1) shows that for an interval H∗, the running variable can be fully determined by

observed covariates X in addition to a disturbance term, η, where X ⊥ η and u ⊥ η.

Then, if the interval H∗ exists, conditioning on a specific set of covariates X = XT

for the pre-intervention period:

Y
(0)

0 (R)|XT , R ∈ H∗ = E[g(XT , uit, Rit)|R, R ∈ H∗] + α0

= E[g(XT , uit, h(XT ) + ηit))|R] + α0 = E[g(XT , uit, h(XT ) + ηi))] + α0 = µXT ,u + α0

Thus, for any R1, R2 ∈ H∗,

E[Y (0)
0 (R1)|XT ] = E[Y (0)

0 (R2)|XT ] (2)

Equation (2) shows that as long as there is no systematic confounding within the
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generalization bandwidth after controlling for covariates X, H∗ can be identified for the

pre-intervention period. In fact, the width of H∗ will be fully determined by the widest

interval for which equation (2) holds.

Figure 1 illustrate the original setup for the two periods, showing the curves for

conditional expectation of potential outcomes Y
(0)

t (R) = E[Y (0)
it |R] and Y

(1)
t (R) = E[Y (1)

it |R].

For the pre-intervention period only the potential outcome under control Yi0 = Y
(0)

i0 is

observed (Figure 1a), while for the post-intervention period the potential outcome under

treatment Yi1|Ri < c = Y
(1)

i1 is observed for individuals under the cutoff c, and the potential

outcome under control Yi1|Ri ≥ c = Y
(0)

i1 for units above the cutoff.

The generalization bandwidth will be determined by the widest interval H around

the cutoff for which condition (2) holds. Then, for each interval H = [H−, H+] ∈ H, where

H is the set of all possible intervals that contain the cutoff c, a potential solution S ∈ S will

be given by:

S : H ∈ S iff E[Yi0|XH , Ri ∈ Hc−] = E[Yi0|XH , Ri ∈ Hc+] (3)

Where Hc− = [H−, c) and Hc+ = [c, H+] represent the sub-interval of H below

and above the cutoff c, respectively, and XH+ is the distribution of the observed covariates

within interval Hc+ (treated units). Then, the generalization bandwidth will be the interval

H within the solution set S with the largest length:

H∗ = max{|H| | H ∈ S}

Once the generalization bandwidth H∗ is identified for t = 0, and under the follow-

ing assumptions:

Y
(0)

0 (R|X) = Y
(0)

1 (R|X) + (α1 − α0) ∀ R ∈ H∗ (4)
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Figure 1: Setup for the GRD method in the pre- and post-intervention period with potential
outcomes

Y
(1)

1 (R)|X⊥u ∀ R ∈ H∗ (5)
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the generalization bandwidth H∗ can be applied to the post-intervention period

t = 1.

Assumption (4) refers to the idea that absent the treatment, the conditional ex-

pectation of potential outcome under control for the pre-intervention period and post-

intervention period would have the same trend within the generalization bandwidth. This

implies that the distribution fu|R of unobserved covariates does not depend of the period t

within interval H∗, which can be partially tested for the portion of H∗ in the post-intervention

period that covers the control group (H∗
− or H∗

+, depending on treatment assignment). As-

sumption (5), on the other hand, shows that to be able to obtain a causal estimate within

the interval H∗, the potential outcomes under treatment conditional on observed covariates

have to be independent of unobserved confounders, so Y
(1)

1 (R)|X will depend on R only

through the potential heterogeneity of the treatment effect.

Finally, the estimate of interest, the average treatment effect on the treated (ATT)

within the generalization bandwidth H∗ , can be determined as following:

ATT = E[Y (1)
i1 − Y

(0)
i1 |R ∈ H∗

c−, X]

Given (3) and (4), the average treatment effect on the treated can be re-written as

following:

ATT = E[Yi1|R ∈ H∗
c−, X] − E[Yi1|R ∈ H∗

c+, X]

The next sub-section shows a practical implementation of GRD using a represen-

tative matching approach.
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2.2 Generalizing a regression discontinuity in practice

In order to implement the previous method, a representative template matching approach

(RTM) is used based on the original template matching procedure proposed by Silber et al.

(2014) and extended by Bennett et al. (2019). Similar to other matching methods, represen-

tative template matching has several properties that are appealing. Unlike commonly used

parametric adjustment procedures, matching allows us to compare observations that are alike

while maintaining the units of analysis intact (Rosenbaum & Silber 2001). In that same line,

matching does not need to rely on the imposition of functional forms for adjustments, reduc-

ing the potential risk of bias due to parametric structures (Imbens 2015). Finally, matching

has the advantage of separating the adjustment procedure from the outcomes, preventing

potential manipulation (Rubin 2008).

However, unlike other matching procedures, RTM allows matching of multiple

groups under the same balancing restrictions. Additionally, RTM matches all groups to

a sample of a target population of interest, facilitating the estimatation of a Target Av-

erage Treatment Effect (TATE). In this case, RTM is implemented using a mixed integer

programming approach which allows for the direct balance of covariates, while at the same

time substantially reducing computing time of the optimization process even in large sam-

ples (see Bennett et al. (2019) for a thorough implementation of representative template

matching).

Figure 2 shows a diagram of the template matching methodology and its different

stages. Figure 2a shows traditional bipartite matching, were there is (usually) a smaller

treatment group and a larger control group. In this setting, the goal is to match treatment

units to control units that are similar in observable characteristics, represented in this case by

the shapes of the different elements. Figure 2b represents the case of template matching when

there are only two groups, a treatment and a control group. In this case, a representative

sample from the target population is selected (i.e. template) and then matched independently
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with the treatment and the control group. In this way, by construction, if each matched

group is balanced with the template, both matched groups will also be balanced with each

other. Finally, Figure 2c shows the extension of template matching with multiple doses or

groups.

Using the idea of representative template matching, the steps for selecting the

largest generalizability bandwidth are outlined below. Figure 3 illustrate the set up for this

method with simulated data, and 4 shows the different stages of the procedure. The main

idea of the GRD algorithm is to start with a template sample representative of a population

very close to the threshold, and update it in each iteration with a representative sample of

a population within a broader interval. This process is repeated until there are significant

differences between the outcome within such interval.

Assuming a treatment assignment based on Dit = 1(Rit < c), and a set of intervals

around the cutoff defined by Hj (Figure 4 (a)), with j = 1, 2, 3..., the step are as follows:

1. Template selection: For a bandwidth Hj, a template Tj of size N is selected out of

S samples of the same size. The template is selected using Mahalanobis distance to

choose the random sample S that most closely resembles the target population within

Hj. The size N of the template depends on the number of observations within the

narrowest bandwidth H1 < c (e.g. N = nc
1, where nc

1 is the number of observations in

H1 under the cutoff c), and it is maintained through out the entire process to control

for minimum detectable effects. The bandwidth H1, on the other hand, is chosen based

on Cattaneo et al. (2015), which identifies a narrow bandwidth around the cutoff where

local randomization can be assumed under a set of assumptions (Figure 4 (b)).

2. Balance constraints: To explain away the relationship between the running variable

and the outcome of interest, a set of predictive covariates is chosen. For these covari-

ates, balance constraints B can be set to restricted mean differences, fine balance, or

13



Treatment
group

Control
group

(a) Traditional matching
Target population Representative

template sample

Treatment
sample

Control
sample

(b) Template matching for treatment and control groups
Target population Representative

template sample

BC BT AT

...

(c) Template matching for multiple difference-in-differences groups

Figure 2: Template matching diagram

exact matching, among many others. More predictive covariates should be matched

more closely (e.g. fine balance) than less predictive covariates (e.g. restricted mean dif-

ference) (Pimentel et al. 2015). The balancing restrictions are maintained throughout
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the different intervals Hj.

3. Grid setup: In order to obtain the estimated conditional potential outcome Y (0)(R),

a grid G needs to be setup for matching, dividing the running variable R in sub-

intervals. For consistency, the grid can be formed by quantiles depending on the total

size of the sample and the size of the template.4 Dividing the running variable into grid

intervals (bins) of equal sample size allows for consistency in the matching procedure

and proper identification of overlapping characteristics. Let G
(1)
j be the bandwidth for

treated units between Gj and the cutoff, where G1 is the closest to the cutoff.

4. Matching and Re-Matching: Once the balancing restrictions are set, and the tem-

plate Tj is selected for the treatment population within bandwidth Hj, each interval

of the grid is matched to the template Tj (Figure 4 (c)).5 Due to potential lack of

overlap, matching may not be feasible for the entire grid, especially on its extremes. A

feasibility bandwidth Fj is identified as the largest continuous interval within the grid

for which all observations can be matched to the template Tj (Figure 4 (c))).

5. Outcome assessment for pre-intervention period: Using the previously matched

samples within Fj, a local polynomial regression estimator is fitted for the outcome

of interest over the running variable, f(R, Tj)6 (Figure 4 (d)), with a (1 − α)% CI of

[f(R, Tj)l, f(R, Tj)h]. By comparing the estimated function to the level of the outcome

at the cutoff score f(c, Tj) = fc−j, a local generalization bandwidth Hj
g is identified for

template Tj if |Hj
g | > |Hj|, such that:7

Hj
g = [max{f(R, Tj)h < fc−j}, min{f(R, Tj)l > fc−j}]

4For a sample size of 10, 000 for t = 0 and a template size N = 500, the grid could be set to be deciles of
the running variable, allowing for matching of 2:1 between each grid interval and the template.

5Due to computational advantages, the use of cardmatch() in the R designmatch package (Zubizarreta
et al. 2018) is highly recommended for this stage.

6Other methods can be used to estimate the relationship between the running variable and the outcome
of interest, but in this case, the function lprobust from the nprobust (Calonico et al. 2019) was used.

7Assuming a positive relationship between Y and R.
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The process is repeated for Hj+1 = G
(1)
j+1, until |Hj

g | ⊂ |Hj|.

If |Hj
g | ⊂ |Hj|, then the generalization bandwidth is

H∗(α, B) = Hj−1
g

.

6. Estimation of the Average Treatment Effect on the Treated (ATT): Finally,

using the bandwidth H∗ found in the previous step, the template T ∗ is matched and re-

matched to both the treatment and control group within the generalization bandwidth

for the post intervention period (Figure 5), including a new balancing constraint that

minimizes the distance to the cutoff for the control group. This restriction does not

change the balance on matching covariates, but prioritizes units from the control group

that are closer to the treatment group in terms of the running variable. Given that there

is additional uncertainty introduced by the estimation of the generalization bandwidth

in the pre-intervention period, in practice a matched difference-in-differences estimator

is used, where units from the pre and post-intervention period are matched to the same

units of template. Then, the average treatment effect on the treated τAT T is estimated

as following:

τ̂AT T =
N∑

k=1

Yk(1)1 − Yk(0)1 − (Yk(1)0 − Yk(0)0)
N

Where k(z)t represent a unit from matched group k = 1, ..., N belonging to treatment

assignment z = 0, 1, from period t = 0, 1. Variance of the estimator using a paired

t-test can be obtained as following:
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V ar(τ̂AT T ) =
N∑

k=1

(dk − τ̂AT T )2

N − 1

Where dk = Yk(1)1 − Yk(0)1 − (Yk(1)0 − Yk(0)0) is the difference between treatment and

control for the post minus the pre-intervention period for each matched pair k.
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Figure 3: Mean outcome by running variable bins in original data setup for GRD procedure
for pre-intervention (T = 0) and post-intervention (T = 1) periods
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Figure 5: Matched data for post-intervention period within generalization bandwidth

It is important to note that the generalization bandwidth is dependent on the

balancing restrictions that are imposed. The more stringent the balancing constraints are,

the closer the match (if feasible), but could potentially result in a more narrow generalization

bandwidth.8 This trade-off will be context-dependent for now, and is left up to the researcher

to propose the appropriate balancing restrictions according to the specific context.9

The maximum bandwidth H∗ found for the pre-intervention t = 0 period is applied

to the post-intervention t = 1 period, under the assumption that, absent the intervention, the

relationship between the running variable and the outcome would not have changed across
8The generalization bandwidth could be narrower under more stringent balancing restrictions because

it would be harder to find matching units for the template. However, on the other hand, more restrictive
balancing constraints might be better at explaining away the relationship between the running variable and
the outcome of interest.

9In future work, optimization strategies for the trade-off between balancing constraints and overlap will
be developed.
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time. However, this assumption poses the challenge of having to match post-intervention

units under the same balancing restrictions as the pre-intervention units. One of the ad-

vantages that RTM provides in this setting is that, unlike other approaches, it allows for

matching of all four groups (treatment and control group before and after the interven-

tion) under the same balancing restrictions. Unlike propensity score approaches used for

difference-in-differences, units are not only matched on the “average” characteristics of a

matched pair (Keele et al. 2019) to obtain a set of four matched observations, but the exact

same balancing constraints can be enforced for all four units in the matched group. This

does not only provide more precision in the estimated effects, but will also provide estimates

that are less sensitive to hidden biases.

3 Simulations

In this section, simulated data is generated to assess the performance of GRD under different

scenarios against a traditional RD estimator. For simplicity, simulations include one observed

covariate (xit), one unobserved confounder (uit), a running variable rit with mean 0, and an

observed outcome yit, for two periods t = 0, 1. Data is generated using normal distributions

for the observed and unobserved covariates (X ∼ N (0, 10) and U ∼ N (0, 10)), and the

running variable r is generated as a linear combination of x and u plus a disturbance error,

rit = βr,xxit + βr,uuit + εit, with a range of [−600, 600]. Outcome y is also generated as a

linear function of x and u and a error term, yit = βy,xxit + βy,uuit + νit, in addition to a

treatment effect τ for treated units. Parameters β and τ depend on the scenario, as well as

the sample size for each period.

The three dimensions that define the different simulation scenarios are:

• Sample size: Large (20,000 obs) and small samples (2,000 obs).

• Correlation between x and r: Low (0.33) and high (0.66).
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• Treatment effect: constant (τ = 0.2σ) and heterogeneous (τ = 0.2σ + 0.0025σ · r),

where V ar(yi0) = σ.

For each scenario, the true generalization bandwidth is set to [−200, 200], and

balancing restriction on the observed covariate xit is set to fine balance on the covariate

deciles. The template size for large samples is 1,000 observations, while for the small sample

size is 100. GRD estimates for the generalization bandwidth are compared to traditional

RD estimates obtained using the rdrobust package in R (Calonico et al. 2018).

Three measures are used to assess the performance of the estimator based on its

error term, ϵ = τ̂ − τ : bias, variance, and root mean square error (RMSE). Bias is measured

as the ratio of the difference between the estimated and the true effect over the true effect,

and variance is estimated as a percentage of the true effect. Using the error term of the

estimator to assess performance allows for the comparison of the traditional RD against

the GRD estimator for heterogeneous effects. As the bandwidth estimated by the GRD

also varies with each simulation, introducing variance for the true effect in the heterogenous

scenario across simulations, the performance of the estimator is assessed without confounding

the variance of the bandwidth estimation with the estimator variance.

Table 1 shows the results for 500 simulations under different data generating pro-

cesses according to the parameters mentioned above. For small sample sizes, the GRD

estimator performs as well as the robust RD estimator: Even though the generalization es-

timator presents slightly higher bias, variance is lower. Simulation for large samples show a

similar story, though in most cases there is a significant reduction in bias for both estimators.

Particularly for large samples under heterogeneous effects, the GRD estimator presents small

biases, similar in magnitude to the RD robust estimator, and even higher precision than the

latter. In this case, however, GRD is obtaining estimates away from the cutoff of eligibility,

and not exclusively at the threshold.
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Table 1: Error term performance between rdrobust and GRD estimator for different sce-
narios

(a) True effect τ = 0.2σ

Small Sample Large Sample
Bias (%) Var (%) RMSE Bias (%) Var (%) RMSE

Low Robust RD -0.009 0.619 1.573 -0.002 0.060 0.490
correlation GRD 0.025 0.552 1.486 -0.042 0.060 0.521
High Robust RD -0.003 0.608 1.559 0.012 0.064 0.511
correlation GRD -0.008 0.599 1.547 -0.030 0.057 0.495

(b) True effect τ = 0.2σ + 0.0025σ · r

Small Sample Large Sample
Bias (%) Var (%) RMSE Bias (%) Var (%) RMSE

Low Robust RD 0.006 0.594 1.540 -0.001 0.061 0.493
correlation GRD 0.017 0.318 1.612 0.008 0.027 0.464
High Robust RD -0.024 0.621 1.577 -0.001 0.083 0.576
correlation GRD -0.011 0.279 1.457 0.003 0.034 0.497

Notes: Performance for error term of RD robust estimator (Calonico et al. 2018) and GRD,
calculated as ϵ = τ̂ − τ , where τ̂ is the estimate for each method and τ is the true effect.

Figure 6 shows the error distribution for both estimators for the scenario of high

correlation and large sample size.

In terms of the generalization bandwidth (Table 2), estimation of the generalization

interval is more precise in large samples, particularly with low correlation. For example, in

large samples, the estimated lower bound of the generalization bandwidth is −183.5 (SD =

23.7)for low correlation between x and r, while for high correlation scenarios, the estimated

lower bound is −147.2 (SD = 38.5). The estimation is conservative compared to the true

generalization bandwidth, especially in high correlation scenarios, given the use of a smooth

local polynomial function.
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Figure 6: Error term distribution for RD and GRD estimators under large samples with low
correlation between x and r
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Table 2: Mean generalization bandwidth for different settings of simulations

Small sample Large sample
Low correlation -201.92 -183.54

(52.18) (23.70)
High correlation -166.63 -147.17

(42.23) (38.53)

Notes: Standard deviation shown in ()

4 Application: Free Higher Education in Chile

In this section, an application for the previously described method is presented, using the

introduction of Free Higher Education in Chile as a case study. First, the intervention is

described, as well as the specific context of higher education in Chile and the data used

for the analysis. The results for traditional RD are shown for application and enrollment

outcomes. The implementation for the generalized RD in this setting is also outlined, and

report results for university enrollment and applications.

4.1 Introduction of Free Higher Education and the Chilean Con-

text

Even though recent work has shown that attending college is not a beneficial decision for

everyone (Heckman et al. 2016; Hastings et al. 2014), there is concrete evidence that, at

least for some students, earning a higher education degree can positively affect life outcomes

(Dee 2004; Hastings et al. 2015). However, students face multiple constraints when deciding

whether to attend college: previous college preparation, information frictions, and credit

constraints, just to name a few (Dynarski & Scott-Clayton 2013). The latter are particularly

salient in the policy world, as governments and different private and public entities have

invested in several programs and interventions to try to alleviate this restriction.

One of the potential policies that can be adopted to relief students from credit

constraints is Free Higher Education (FHE). However, FHE is seen as a controversial inter-
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vention. Even though certain advocates say that it promotes a more equal society, there

are also detractors that argue that it is a regressive policy (Barr 2003). Additionally, given

recent evidence of the heterogeneity in the return of a college degree in Chile (Hastings et

al. 2015; Rodriguez et al. 2016), it is not clear whether FHE would provide an inadequate

incentive for students to enroll in university.

In the Chilean case, even though until 2015 the government offered a vast array

of financial aid instruments for attending college, including scholarships for students up to

the third lower income quintile (Bucarey 2018), and income-contingent government-backed

loans with low interest rates, there was an important pressure from citizens’ movements to

implement free higher education. Thus, at the end of 2015 the government implemented a

FHE policy. Students that wanted to opt into this policy had to comply with two require-

ments: (1) be admitted or enrolled in a university that had agreed to participate in the

FHE program, and (2) belong to the bottom half of the income distribution (MINEDUC

2016). In December 2015, the Chilean Congress included a decree in the national budget

which allowed students belonging to the lowest 50% of the income distribution to study in

most universities in Chile for free. The policy benefited around 150,000 students who were

admitted to universities in 2016.

In terms of higher education, Chile has a centralized admission system to most

universities10 that operates through a deferred admission mechanism. Students must take

the admission test (PSU) in order to apply to university, and their admission score is a

weighted average of their PSU scores, high school GPA, and high school ranking.11 Once

their PSU scores are published, students must rank 10 preferences for institution-degrees, and

get accepted based on their admission score and the number of slots each institution-degree

offers.12

10All selective and prestigious universities participate of the centralized admission system.
11Unlike other countries like the US, admission scores are the only determinant in a student’s regular

admission to university.
12Unlike the US, Chilean students apply to a specific degree within an institution when applying to college
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Until 2015, government scholarships or government-backed loans provided to lower

income students only covered up to a “referential” tuition cap.13 The difference between

the referential and real tuition needed to be covered by the student either by out-of-pocket

payments, loans (government or private), or university scholarships. The introduction of

free higher education for vulnerable students, which covered uncapped full tuition, meant

that lower income individuals who were admitted into university did no longer have financial

constraints regarding the cost of full tuition, allowing them to potentially choose better

institutions which tend to be more expensive. However, anecdotal evidence shows that prior

to the introduction of FHE most students in lower income deciles that were admitted into

university received other financial aid that helped them cover the gap.

It is important to note that even though government financial aid was extensive

in terms of scholarships and income-contingent loans, they did require a minimum PSU

score to be eligible for them. Specifically, government scholarships required 500 points on

average between PSU Math and PSU Language, and government-backed loans required 475

points. Even though these thresholds were not particularly high, especially considering the

cutoff scores for admissions, they did affect lower-performance/lower-income students who,

in absence of the score requirement, could be eligible for financial aid. FHE policy, on the

other hand, did not establish a performance threshold to obtain the benefit and, as a result,

might have been more relevant for students in this group.

Additionally, FHE might have had other effects on students’ outcomes, other than

enrollment. Lower-income students who otherwise would have not applied to college might

change their decision due to this new policy. Students’ career choices might be affected as

well, as the cost of studying a “less profitable” degree is reduced if they intended to pay

for their higher education with a loan instead of a scholarship in the absence of the policy.

(e.g. Engineering at Catholic University), and each institution-degree combination has their own cutoff
scores and available slots.

13Referential tuition was calculated by the government based on groups of institutions and degrees, and
were always lower than the real tuition charged by universities.
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Finally, FHE could have also reduced the gap in access between lower and higher income

students, reducing inequality, especially in the most prestigious universities.

Even though there is still no consensus on the impact that the policy had, recent

work by Bucarey (2018) using data from 2008 until 2015 (before the FHE policy was im-

plemented) has shown that the introduction of this new financing policy may actually be

detrimental for lower income students if expanded. Leveraging RD estimates from the cutoff

PSU score for scholarship eligibility before the introduction of FHE, and combining it with

a structural approach, Bucarey (2018) finds that implementing free higher education for the

entire population would actually produce an increase in cutoff scores for more selective (and

lucrative) institution-degrees, crowding out more vulnerable students.

Given that actual receipt of the treatment was bind to enrollment, the intervention

of interest is the eligibility for free higher education, e.g. belonging to the bottom 50% of

income distribution. In this analysis, only partial equilibrium effects of the introduction

of free higher education in Chile are considered, in the way it was implemented during its

first year. It is important, however, to keep in mind potential general equilibrium effects

which could provide substantially different results in the long run or on scale-up (Bucarey

2018).

4.2 Data

The data used for the analysis corresponds to administrative data from the Ministry of Ed-

ucation and DEMRE, the department that administrates the Chilean university admission

exams called PSU. The data provided by the Ministry of Education comes from the Edu-

cational Quality Measurement System (SIMCE), and includes past scores for standardized

tests (8th grade for 2014, and 10th grade for 2015 and 2016) at the individual and school

level, socioeconomic and demographic information for each student,14 school characteristics,
14Some of the covariates include self-reported household income, parental education, number of books at

home, type of health insurance, among others.
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academic performance (i.e. grades and ranking), as well as school attendance. The data

provided by DEMRE contains complete information from the admission process 2014-2016,

which includes two years before FHE was implemented and one year after. The data includes

demographic characteristics for each student enrolled in the PSU,15 individual and family

socioeconomic variables, PSU scores, application preferences and admission results.

The Ministry of Education also provided income per capita and socioeconomic

deciles at the student level, which were used to assign students to different benefits related

to higher education (e.g. scholarships and loans). The Ministry has both the declared income

per capita (initial) by the student in the Unique Socioeconomic Assistance Form (FUAS),

as well as the verified income per capita (final).

Even though FHE has been implemented for a few years to the date, only the year

2016 is used as the post-intervention period. This decision was made based on the fact

that for 2016 the policy was not expected,16 and did not have an effect on other inputs for

admission, such as scores. The fact that the introduction of the policy was not anticipated by

students also provides additional robustness to the assumption that other key confounders

did not change between the pre- and post-intervention period for our population of interest.

The outcomes of interest for the analysis include enrollment rates in university, as well as

application decisions.

4.2.1 Sample selection

The final sample focuses on senior high school students who had valid income per capita

given their application to the Unique Socioeconomic Assistance Form (FUAS).17 Given that

FHE also required students to be admitted into university, only students with valid math

and language PSU scores are analyzed; these are the two mandatory tests students’ need to
15Over 90% of senior high school graduates from the respective year enroll in the PSU.
16FHE was actually introduced in the budget the very last day possible, and almost a month after students

had already taken the admission exam.
17Most students below the 9th income decile complete the FUAS, which is a requirement to apply not

only to scholarships, but also government backed loans.
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take in order to apply to college. Additionally, only students who can be matched to previous

data provided by the Education Quality Measurement System (SIMCE) for either 8th (2014)

or 10th grade (2015-2016) are kept. Finally, due to the implementation of an additional so-

cioeconomic adjustment for some students in 2016, the sample is comprised only by students

who were not affected by this change. In 2016, an additional criteria was incorporated to

adjust socioeconomic deciles based on other students’ assets and circumstances: it does not

alter the verified income per capita, but it adjust their assigned decile. In turn, only 23% of

students in the sample in 2016 have the same final assignment decile as the one determined

by their verified income per capita. Given this new adjustment method, only observations

that maintained their decile assignment are used.18

To verify that the latter decision did not affect the internal validity of the identifi-

cation strategy, the income distribution before and after dropping the adjusted observations

in 2016 is analyzed. Figure 7 shows the distribution for both samples, showing that there is

no bunching or jumps in the distribution around the cutoff of eligibility.

The final sample has 199,334 observations. Table 3 shows some characteristics from

the final sample of analysis.

18All deciles were approximately affected in the same way by the adjustment, but particularly the bottom
3 deciles which have a higher rate of adjustment (changed to a higher decile). On average, within every
verified income decile, students affected by the adjustment increased their assgined decile by one.
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Figure 7: Distribution of student income per capita for sample before and after dropping
observations with adjusted deciles
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Table 3: Sample characteristics of students by year

2014 2015 2016
Female 0.55 0.55 0.53
Mother’s Ed

Primary, but less than HS 0.13 0.12 0.09
High school grad 0.38 0.39 0.36
Some technical 0.05 0.05 0.06
Technical grad 0.12 0.12 0.16
Some university 0.03 0.03 0.03
University grad 0.09 0.09 0.17
Missing 0.01 0.02 0.03

Father’s Ed
Primary, but less than HS 0.13 0.12 0.09
High school grad 0.34 0.35 0.32
Some technical 0.04 0.04 0.05
Technical grad 0.09 0.09 0.11
Some university 0.04 0.04 0.05
University grad 0.11 0.11 0.19
Missing 0.06 0.07 0.07

Public health insurance 0.75 0.76 0.63
Lives in Metropolitan Region 0.37 0.36 0.42
SIMCE score (student) 276.71 279.56 286.61
HS ranking score 592.40 588.67 595.67
GPA score 565.40 559.58 571.14
Language PSU score 509.45 509.05 530.82
Math PSU score 515.31 512.16 535.56
Public school 0.36 0.32 0.27
Average SIMCE score (school) 262.84 270.33 277.75
School SES group 3.03 2.56 3.10
Observations 76654 94952 27728
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4.3 Results

4.3.1 RD findings

Figure 8 shows the allocation of FHE by income decile. There is a clear sharp discontinuity

after the 5th decile, which is consistent with the allocation of the policy given the government

requirements. In this case, the eligibility criteria (i.e. belonging to the 5th income decile or

lower) does not necessarily imply that the student will get FHE. One of the most important

requirements to get FHE besides income eligibility is being admitted into a university that

subscribed to the policy. However, it is clear that the treatment variable used for the

analysis, belonging to the bottom 50% of the income distribution, did affect the probability

of assignment to FHE.
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Figure 8: Proportion of students by income decile assigned to Free Higher Education in 2016

In this section, focus is on two different outcomes: application to university and
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enrollment. The first one measures the magnitude of the effect that being socioeconomically

eligible for FHE had on applying to a university; 19 The second one captures the effect of

the same treatment on actually enrolling in college.20

In the Chilean context, enrollment in university depends on the admission score (i.e.

being selected subject to application) and students’ decisions, such as whether they apply

to university and where they apply. Given that both in the traditional RD strategy, as well

as in GRD, determinants of the admission score21 are closely adjusted for, it is possible that

the main differences in enrollment comes from adjustment in preferences/decisions triggered

by the FHE policy. For instance, eligible students that would have not applied to college in

previous years due to cost of tuition, might have changed their minds once the policy was

introduced.

For illustration purposes, Figure 9 shows the average enrollment in university both

pre- and post- intervention by income per capita. The figure shows that while there is a

smooth curve along the 5th decile cutoff in 2015, there is a clear jump in enrollment in 2016

at this same threshold, which is an indication of an effect around the cutoff.

To check whether there are discontinuities at the cutoff related to other charac-

teristics, a set of 10 covariates used for adjustment is plotted against income per capita in

2016. Figure 10 shows the plots for 10 different covariates, where there are no significant

discontinuities around the cutoff.

Table 6a shows the results for both outcomes using a traditional RD approach from

the rdrobust package (Calonico et al. 2018).22 The effect on application is positive, but
19An application is considered successful if a student marked at least one preference for an institution-

program during the application period and previously took the mandatory tests required for the program.
20Notice that enrollment implies that the student had at least one successful application.
21Admission scores differ by university-program, given that it is a weighted average of PSU, GPA, and

ranking scores, in addition to history and science PSU scores, for which the matching strategy does not
control for. The latter tests are optional, and many non-selective programs do not require them and/or
weight them significantly less than the other three scores.

22In the traditional RD strategy, the same set of covariates is used as controls as in the matching strategy
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Figure 9: Mean university enrollment rates before (2015) and after (2016) FHE was imple-
mented by income per capita

not statistically significant at conventional levels (point estimate = 0.035; p-value = 0.105).

The effect on enrollment, however, is larger and statistically significant (point estimate =

0.07; p-value = 0.02). These results show that the policy had a positive and significant effect

on outcomes, ranging from 6% to 13% increase with respect to the control group at the

cutoff.

for the GRD to maintain consistency.
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Figure 10: Average covariates for students by adjusted income per capita in 2016
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4.3.2 GRD findings

To implement the generalized regression discontinuity design as proposed in subsection 2.2,

a template T of size 1000 is chosen from 100 S random samples.23 Based on the total sample

size of the post-intervention period and the size of the template, the grid for matching is built

by dividing the running variable into 20 quantiles. Starting with a representative template of

the treatment units in the narrowest bandwidth, each grid bin is matched under the following

balancing constraints to the template:

• Restricted Standardized Mean Difference: For the following covariates, restricted their

mean difference is imposed to be no greater than 0.05 SD. Student’s 10th grade SIMCE

score (standarized test), school average 10th grade SIMCE score, school SES group,

student’s high school ranking score, GPA score, PSU Language score, PSU Math score,

reside in the Metropolitan region, attended a public school, has public health care.

• Fine Balance: The fine balance restriction allows for balancing of the marginal distri-

bution of categorical covariates. The following covariates were matched under this con-

straint: Gender, Mother’s education (8 categories), Father’s education (8 categories),

PSU Language score (deciles), PSU Math score (deciles), GPA score (quintiles)

Given that parental education, as well as school characteristics and student’s per-

formance are highly predictive of household income, that set of covariates is matched more

closely than other characteristics. Additionally, matching closely on admission scores en-

sures that the probability of admission would only be affected by the decision of whether

and/or where to apply made by each student. The intervention might have also affected

these preferences.

After conducting representative template matching gradually getting away from the
23The starting size of the template corresponds roughly to the number of observations for the treatment

group within the narrow bandwidth.
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cutoff under the balancing restrictions previously described, the generalization bandwidth

for both application and university enrollment was estimated. The generalization interval

for the application is [-M CL$500.26, M CL$1,254.86], and for enrollment is [-M CL$500.26,

M CL$300.88] around the cutoff. For comparability reasons, the narrowest bandwidth is

used for both outcomes.

The generalization interval estimated for the pre-intervention period is [-M CL$500.26,

M CL$300.88], and it is applied to the post-intervention period. The assumption of conditional-

time invariance can be tested for the post-intervention period using the control side. Figure

11 shows a local polynomial fitted to the control matched units in the post intervention

period. The lack of trend in the local polynomial function provides additional evidence that

the conditional time-invariance assumption at least partially holds for the control-side of the

distribution.

The generalization interval in the post-intervention period includes students from

the 4th and 5th income decile on the treatment side, and on the treatment side, comprise of

50% of the overall treated population. To benchmark the results of the matching procedure,

Table 4 shows the mean characteristics for the complete 2016 sample before matching, for

both the treatment and control group. Table 5 shows the balance between both the matched

treatment and the control group within the generalization bandwidth for the pre- and post-

intervention period. Panel (a) of the same table shows the variables matched on restricted

standardized means, while panel (b) shows the results for fine balance.

Figure 12 shows the balance for covariates in 2016 for the entire sample, the sample

within the generalization bandwidth, and the matched sample for the GRD.

Figure 13 shows the RD plot for the post-intervention period, highlighting the

narrowest bandwidth used for the RD estimate, as well as the maximum generalization

bandwidth found using the previously described method for the enrollment outcome.
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Figure 11: Local polynomial fit for post-intervention period matched sample for control
units: Partial test for conditional time-invariance assumption.

Table 4: Sample characteristics for the year 2016 for students below (T) and above (C) the
5th income decile

Treatment group (SE decile ≤ 5) Control group (SE decile > 5) Std Dif T-C
Female 0.55 0.52 0.05
Mother’s education (years) 11.37 13.55 -0.67
Father’s education (years) 11.52 13.83 -0.76
Language PSU score 504.08 556.90 -0.51
Math PSU score 507.69 562.75 -0.53
GPA score 554.88 586.99 -0.33
Ranking score 579.84 611.11 -0.26
SIMCE 10th grade (student) 274.90 298.03 -0.48
SIMCE 10th grade (school) 266.91 288.32 -0.62
SES group school 2.68 3.50 -0.82
Lives in Metropolitan region 0.40 0.44 -0.08
Public school 0.35 0.19 0.38
Public health insurance 0.82 0.45 0.83

Within the generalization bandwidth, both the treatment group and the control

group are matched under the same balancing constraints used before, minimizing the distance
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Table 5: Balance across matched samples for pre- and post-intervention period for observa-
tions within the generalization bandwidth for external validity of university enrollment

(a) Restricted mean balance (0.05 SD)
Pre-intervention Post-intervention

Mean T Mean C Std Dif Mean T Mean C Std Dif
SIMCE (student) 279.06 278.90 0.00 277.53 278.06 -0.01
SIMCE (school) 269.41 270.29 -0.03 268.98 268.99 -0.00
School SES group 2.60 2.60 -0.00 2.64 2.64 0.00
Ranking (score) 583.22 583.73 -0.00 583.79 583.01 0.01
GPA (score) 556.22 555.86 0.00 557.22 557.92 -0.01
PSU Language 511.83 510.55 0.01 510.31 509.39 0.01
PSU Math 513.47 513.92 -0.00 512.44 512.29 0.00
Lives in capital city 0.40 0.41 -0.02 0.40 0.41 -0.02
Public school 0.31 0.31 0.00 0.33 0.33 -0.00
Has public health insurance 0.81 0.80 0.01 0.81 0.80 0.03

(b) Distributional balance (near fine balance). The balance is maintained for all 6 covariates and
35 categories.

Pre-intervention Post-intervention
C T C T

Gender
Male 453 453 453 453
Female 547 547 547 547

Father’s Education
Primary or less 168 168 168 168
Less than HS 130 130 130 130
High school grad 355 355 355 355
Some technical 42 42 42 42
Technical grad 101 101 101 101
Some university 43 43 43 43
University grad 83 83 83 83
Missing 78 78 78 78

Mother’s Education
Primary or less 146 146 146 146
Less than HS 121 121 121 121
High school grad 416 416 416 416
Some technical 60 60 60 60
Technical grad 138 138 138 138
Some university 31 31 31 31
University grad 59 59 59 59
Missing 29 29 29 29

Language PSU (deciles)
1 70 70 70 70
2 83 83 83 83
3 97 97 97 97
4 96 96 96 96
5 109 109 109 109
6 104 104 104 104
... ... ... ... ...
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Figure 12: Balance between treatment and control groups for (i) entire sample 2016, (ii)
entire sample within generalization bandwidth BW ∗, and (iii) matched sample within BW ∗

to the cutoff for the control group. Table 6b shows the estimated effect for the average

treatment on the treated within the generalization bandwidth using a paired t-test approach.

Using the GRD approach, the effect for the treated population within the bandwidth of

generalization 5.2 percentage points (p-value = 0.02) for applications and 7.7 percentage

points (p-value < 0.01) for enrollment.

Figure 14 shows the difference in application and enrollment between the treated

and control group on the sample within the generalization bandwidth of adjusted income per

capita, for both the pre-intervention and post-intervention periods (difference-in-differences

estimates). Figure 14a shows the mean difference in outcomes by year and treatment group

for all students within the generalization bandwidth, without adjusting for covariates. As it
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Figure 13: Regression discontinuity plot for year 2016 showing narrowest and generalization
bandwidth

can be seen from the figure, there are significant differences in application and enrollment

in the pre-intervention period, which are due to the relationship between income and the

outcomes. Figure 14b shows the difference in application and enrollment for matched stu-

dents using representative template matching. This figure shows that when the predictive

covariates are taken into account, the relationship between the running variable and the

outcome can be explained away for the generalization bandwidth, getting a null difference

in application and enrollment rates for students in 2015, and a positive treatment effect for

the post-intervention year using matching difference-in-differences estimators.

Comparing the results for both outcomes, most of the effect of eligibility to FHE

on enrollment appears to be due to an increase in applications. This provides some evidence

that the main gap that FHE closed for vulnerable students was on the actual decision to
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Table 6: Results for outcomes of interest at the cutoff (RD) and within a generalization
bandwidth (GRD)

(a) Results for traditional RD

Application to University Enrollment to University
Effect 0.035 0.069**

[-0.007, 0.077] [0.026, 0.112]
Effective N Obs 6,588 6,458
Mean control 0.606 0.515

(b) Results for GRD method

Application to University Enrollment to University
Effect 0.052** 0.077***

[0.008, 0.096] [0.029, 0.125]
N Obs 2,000 2,000
Mean control 0.568 0.472

Generalization Bandwidth [-M$500,M$301]

95% CI in squared parenthesis.

Statistical significance at *: 10%, **: 5%, and ***: 1%

apply to university (Figure 14).

Figure 15 also shows evidence that is consistent with an increasing effect hypothesis

for enrollment as a function of distance to the cutoff. Even though it cannot be rejected

that effects are the same, the increasing trend in point estimates provide additional support

to the hypothesis that students farther away from the cutoff of eligibility experience larger

effects than those on the margin.
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(a) Difference in outcomes for all students in the generalization bandwidth
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(b) Difference in outcomes for matched students in the generalization bandwidth using representa-
tive template matching

Figure 14: Difference in applications and enrollment for students in the treated and control
group for the generalization bandwidth before and after FHE
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Figure 15: Point estimates and 95% CI on enrollment for different widths of generalization
interval on the treated side

Sensitivity Analysis for Hidden Bias

To assess the sensitivity of the previous results to hidden bias, Rosenbaum bounds are esti-

mated for the effects on application and enrollment previously found (Rosenbaum 1987, 2002,

2015). In particular, the adapted method proposed by Keele et al. (2019) for a difference-in-

differences approach is used. These bounds quantify the change in probability of assignment

between the treatment and control group that would need to occur due to an unmeasured

confounder to qualitatively change the interpretation of the effects found. More specifically,

the parameter Γc represents the ratio between the probability of assignment to treatment

between the treatment and control group that would explain away the results that were

previously found in application and enrollment rates.
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The approach proposed by Keele et al. (2019) in a difference-in-difference setting

for binary outcome switches the use of the sensitivity parameter Γ to Γ2 to account for the

fact that results derive from matched quadruplets, and not pairs. Table 7 shows the results

for both outcomes.

Table 7: Results for sensitivity analysis for hidden bias for GRD estimates on application
and enrollment to university

Application to University Enrollment to University
Γc 1.640 1.616
Pr(Zi1 = 1) 0.622 0.618
Pr(Zi1 = 0) 0.378 0.382

Γc: Critical parameter for unobserved bias.

Pr(Zi1) represents how probabilities should change for assignment to {0, 1} to change qualitative results

The sensitivity parameter Γ relates to the probabilities of assignment to treatment

(P (Zi = 1)) and control (P (Zi = 1)) as following:

P (Zi = 0) = Γc − 1
Γc

P (Zi = 1) = 1
Γc

This means that if there is an unobserved confounder that is not accounted for, then

such confounder would need to shift the probabilities of assignment between treatment and

control to 0.62 vs. 0.38 in order to explain away any significant effect at a 5% significance

level for both application and enrollment. The main advantage of a sensitivity analysis to

hidden bias is that it provides a quantifiable measure of how probabilities would have to

shift so that the qualitative conclusions of the study change. In this case, even thought the

results for application and enrollment are moderately sensitive to potential hidden bias, if

such bias is associated with the running variable, it should work in favor of the effect, so it

is unlikely that is coming in this context from variables associated to income.
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5 Conclusions

Regression discontinuity designs provide a robust setting for estimating local average treat-

ment effects in observational studies. However, their results might be of skewed policy use-

fulness given that estimates are limited to the population just around the cutoff score.

In this paper, it is shown that is possible to generalize regression discontinuity

designs for a broader population of interest. By using a representative template matching

approach, in contrast to other parametric methods, the relationship between the running

variable and the outcome of interest can be explained away for a generalization bandwidth

away from the cutoff by leveraging pre-intervention data to inform the selection of such

bandwidth.

Even though the method proposed requires additional data to inform the selection

of the external validity bandwidth, it provides a sound counter-factual under many policy

settings. Additionally, because matching is used instead of other adjusting methods to

explain away the relationship between the running variable and the outcome, there is no

need to rely on extrapolation to sustain the breakage of this link; even though it limits the

population which can be generalized for, both treatment and control populations are balanced

in observed characteristics under the balancing constrains imposed by the researcher in a

self-weighted sample.

The proposed method also lends itself to multiple extensions that can be useful

for policy, such as two-dimensional regression discontinuity designs, or potential selection at

either side of the cutoff. The use of matching also allows for the straightforward implemen-

tation of sensitivity analysis to hidden biases, as proposed by Keele et al. (2019). Finally,

this method allows for the estimation of a target average treatment effect for a population

of interest, leaving it up to the researcher to select the sample they wish to make inference

on, and increasing the potential usefulness of the method for policy-based evidence.
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